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ABSTRACT

1. Introduction

One important goal in the early phase of drug development is to identify the optimal dose(s) that should

be carried to the later phase, or to help the investigators understand the dose-response relationship better.

The definition of “optimal” dose(s) varies depending on the study goal such as finding the dose which will

produce the maximum efficacy response rate without toxicity, or finding the doses that will provide the

most accurate information about the model parameters for the dose-response model. In this document,

the focus is on the model-based dose finding strategies for which a dose-response relationship is assumed

for the drug under investigation. It is also assumed that the dose range such as maximum toxic dose

has been determined. These dose-finding strategies are developed in the optimal design framework and

for different study goals. As of today, commercial software does not provide options for constructing the

optimal designs for non-linear models which are commonly used in the drug development. A set of R

programs ([?]) is developed to implement the well-known first-order exchange algorithm for constructing

locally optimal designs, L-optimal designs, two-stage design and adaptive optimal designs for bivariate

probit model. A user-friendly interface written in RExcel is used to embed the R programs into the Excel

environment. RExcel ([?], [?]) is an Excel add-in that allows the full functionality of R to be accessed

from Excel. RExcel allows sharing of complex R-based programs with users who have no knowledge of

R. The communication between the programs is hidden from the user.

2. Background of optimal design theory

2.1. Dose-response model. A dose-response model describes the value/probability of a specified re-

sponse as a function of the dose for a specified population. This function is usually given in the form of

a mathematical relationship. For continuous responses, one popular choice of the dose-response model

can be linear models. For binary responses, some popular dose-response functions are logistic regression

model, Emax model, probit model and so on. In this study, the dose-response relationship does not have
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to be monotonic as some dose-finding procedures require. In other words, the response does not need

to increase as the dose increases. In clinical trials, the dose-finding goals may be locating the dose that

will achieve a pre-specified response/probability (such as ED50, ED90), or locating the doses that will

provide the most accurate estimate of the dose-response model. Figure ?? plots the dose-response curve

for logistic regression model(blue curve); the green dots denote the ED50 of this model.

2.2. General model. Here let η(x, θ) denote the dose-response model, where x are the covariates of

interest such as dose, age, gender etc., and θ = (θ1, θ2, · · · , θm)T denotes the model parameters. Consider

the simplest case that the model only contains one covariate dose and there are n dose levels x1, · · · , xn
and the responses collected at these doses are

y11, · · · , y1n1 , y21, · · · , y2n2 , · · · , yn1, · · · , ynnn ,

where n1, n2, · · · , nn are the the number of observations at dose x1, x2, · · · , xn, respectively, and the total

number of subjects is N . In drug development, there are some popular choices of the parametric models

such as the linear regression model

η(x, θ) = θT f(x),

logistic regression model

η(x, θ) =
exp(θT f(x))

1 + exp(θT f(x))
,

where f(x) = (1,x) if only one drug is in the study or f(x) = (1,x1,x2,x1x2) if drug combinations are

considered.

Optimal design theories are based on General Equivalence Theorem ([?],[?],[?]). In the clinical trial

setting, the general goal is to decide how many treatments are needed, where in the pre-specified dose

region to put those treatments, and how to allocate patients to these treatments (the sample size for each

treatment). One can obtain different designs for different study goals such as locate the dose with the

maximum efficacy response without toxicity, or one can obtain the unknown parameters as accurately as

possible. For each study goal, there is a corresponding design criterion which will be discussed in detail

after the introduction of the necessary notations.

Denote the design ξ as

ξ =

 x1, x2, . . . , xn

λ1, λ2, . . . , λn

 , x1, x2, . . . , xn ∈ X

The “optimal” dose often depends on the unknown parameters and the precision of the estimates is

measured by the variance-covariance matrix of the maximum likelihood estimate (MLE) of θ. The log



5

likelihood function is written as:

l(θ) =

n∑
i=1

ni∑
j=1

p(yij |xi, θ),

and MLE θ̂ = arg maxθ l(θ).

2.3. Information matrix. For each individual in the trial we accumulate some information which can

be described by the information matrix µ(x, θ) as

µ(x, θ) = E

[
∂p(y|x, θ)

∂θ

∂p(y|x, θ)
∂θT

]
= −E

[
∂2p(y|x, θ)

∂θ2

]
.

The total information matrix

MN (ξ, θ) =

n∑
i=1

niµ(xi, θ)

can be defined as the summation of the individual information matrices. The precision of the unknown

parameter estimates is measured by the variance-covariance matrix. When the sample size is large enough,

one can observe the asymptotic property that the variance-covariance matrix of the unknown parameters

estimate θ̂ is approximately equal to the inverse of MN (ξ, θ), i.e.

Var(θ̂) ≈M−1N (ξ, θ).

A practical design should be exact, but here it is assumed that the design ξ is continuous. That is to say,

the sample size for a given dose doesn’t have to be a integer, just for simplicity of calculation. In optimal

design framework, it is generally assumed the sample size is given with a defined normalized information

matrix.

M(ξ, θ) = 1/N

n∑
i=1

niµ(xi, θ) =

n∑
i=1

λiµ(xi, θ)

.

2.4. Design criterion and sensitivity function. To reach the ultimate goal of getting the unknown

parameter estimates as precisely as possible, one needs to minimize the design criterion Ψ which is a

function of the information matrix M(ξ, θ) where Ψ is a convex function and differentiable. The ultimate

goal is to locate the design ξ∗ which satisfies the following:

ξ∗ = arg min
ξ

Ψ[M(ξ, θ)], (1)

where Ψ is the convex function (design criterion) for the corresponding study goal. Table ?? lists some

popular design criteria ([?],[?]),

• D-optimality is the most popular criterion which minimizes the general variance of all the un-

known parameters (M−1(ξ, θ)) and is the most robust one.



6

Table 1. Some popular design criteria and corresponding

Criterion Ψ Sensitivity Function Boundary under ξ∗

D ln |M−1(ξ, θ)| tr[µ(x, θ)M−1(ξ, θ)] m

Ds ln |ATM−1(ξ, θ)A| tr[µ(x, θ)M−1(ξ, θ)]− tr[µ2(x, θ)M−1
2 (ξ∗, θ)]#

A tr(AM−1(ξ, θ)) tr[µ(x, θ)M−1(ξ, θ)AM−1(ξ, θ)] tr[AM−1(ξ∗, θ)]

c cTM−1(ξ, θ)c tr[µ(x, θ)M−1(ξ, θ)cT cM−1(ξ, θ)] tr[cT cM−1(ξ∗, θ)]

L(θ) L(θ)TM−1(ξ, θ)L(θ) tr[µ(x, θ)M−1(ξ, θ)L(θ)TL(θ)M−1(ξ, θ)]* tr[L(θ)TL(θ)M−1(ξ∗, θ)]

# µ2(x, θ) and M−1
2 (ξ∗, θ) denote the sub-block of the information matrix that corresponds to the parameters

that are not of interest.

* L(θ)T = ∂η−1(x, θ)/∂θ, where η−1(x, θ) is the target dose (e.g. for a target response rate) derived from the

dose-response model.

• Ds-optimality criterion, the criterion to minimize the determinant of the variance-covariance

matrix of a subset of the unknown parameters. For instance, the precision of the regression coef-

ficients for the first order term in a quadratic model. Where AT θ is the subset of the parameters

that are of interest.

• In A-optimality criterion, A is a m×m non-negative definite matrix, recall here m is the number

of unknown parameters in the model. If A equals the identity matrix I, this criterion minimizes

the average variance of the unknown parameters.

• c-optimality minimizes the variances of a linear combination of the unknown parameters, i.e. cT θ,

where c is an m-dimension vector.

• L(θ)-optimality minimizes the variance of the estimate of a quantity, for instance, a target re-

sponse (rate) of the dose-response model.

• D-optimal designs minimize the volume of the asymptotic confidence region for θ. This property

is easy to explain to practitioners in various fields.

• D-optimal designs are invariant with respect to non-degenerate transformations of parameters

(e.g., changes of the parameter scale).

• D-optimal designs are attractive in practice because they often perform well according to other

optimality criteria; see Atkinson and Donev (1992, Chapter 11) or Fedorov and Hackl (1997).
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In general, it would be a mathematical challenge to locate the optimal design ξ∗ by minimizing function

Ψ directly. However, the Kiefer-Wolfowitz(cite) equivalence theorem provides a necessary and sufficient

condition for ξ∗ that satisfies Equation (??). In another words, this theorem provides the condition– the

so called sensitivity function ψ(x, ξ, θ)– that is the derivative of Equation (??) which equals zero at a

minimum of the function. Table ?? lists the sensitivity function for the corresponding optimal criteria.

For example, the sensitivity function for D-optimal criterion is

ψ(x, ξ, θ) = tr[µ(x, θ)M−1(ξ, θ)] ≤ m, (2)

where m is the number of unknown parameters. The inequality holds if and only if ξ is the optimal

design and equal sign holds at the optimal design points. The property sets a good guideline for checking

whether the design is optimal or not. For other optimal criteria, there are also corresponding upper

boundaries for identifying optimal designs. These boundaries are also listed in Table ??. The following

text will focus on two criteria: D-optimality and L(θ)-optimality.

2.5. Numerical procedure. The well known numerical procedure—first order exchange algorithm—is

developed based on Kiefer–Wolfowitz’s Equivalence Theorem and it usually performs pretty well ([?]. It

is an interactive procedure which shuffles the points among the current design and the candidate design

points set to achieve the optimal condition. All our R programs are based on this numerical algorithm.

The main idea is that at each step of the algorithm, the sensitivity function ψ(x, ξ, θ) is maximized over

the design region to determine the “most informative” (i.e. the point which has the largest variation)

new support point (forward step). It is then minimized over the support points of the current design

to remove the “least informative” (i.e. the point which has the smallest variation) point in the current

design (backward step). See [?] or [?] for more details.

Any numerical procedure for constructing optimal designs requires two key elements:

• The information matrix µ(x, θ) or, equivalently, sensitivity function ψ(x, ξ, θ).

• The design region X (the set of candidate design points).

In all examples discussed in this report, the design region is defined as a compact set, but nonetheless we

search for optimal points on a pre-defined discrete grid. This grid can be rather fine in order to guarantee

that the resulting design is close to the optimal one.

To define a design algorithm, let ξs = {Xis, λis}, i = 1, . . . , ns, be the design at Step s. Here {Xis} is

the vector of support points in the current design and wis is the vector of weights assigned to Xis. The



8

iterative algorithm is of the following form:

ξs+1 = (1− αs)ξs + αsξ(Xs),

where ξ(X) is a one-point design supported on point X.

: Forward step. At Step s, a point x+s that maximizes ψ(x, ξ, θ) over x ∈ X is added to the design

ξs with weight αs = γs, where γs = 1/(n0+s) and n0 is the number of points in the initial design.

: Backward step. After that a point x−s that minimizes ψ(x, ξ, θ) over all support points in the

current design is deleted from the design with weight

αs =

 −γs, λs ≥ γs,

−λs/(1− λs), λs < γs.

In general, the user can change γs to c1/(n0 + c2s), where c1 and c2 are two constants. The

default values of the constants are c1 = c2 = 1.

2.6. Penalty function. In practice, it would be unethical to assign patients to potentially non-efficacious

doses (close to 0) or toxic doses (close to the high end of the design region). To incorporate such constraints

in the design, one can introduce penalty function ϕ(x, θ) Fp. Note that the efficacy and toxicity constraints

are just one example of the penalty function. In real problem, depending on the study goal, any function

of the constraints can be defined as the penalty function([?], [?]). Some examples of the penalty function

are:

• Restricted design region which is a special case of penalty function that all observations should

be taken inside the design region, that the probability of toxicity is lower than a pre-specified

value and the probability of efficacy is larger than a pre-specified value. Note that most of the

time the design region depends on the unknown model parameters.

• Penalty function is based on toxicity and efficacy probabilities and controlled by tuning parame-

ters.

The general optimization criterion Equation (??) becomes:

ξ∗(θ) = arg min
ξ

Ψ[M(ξ, θ)/Fpn(ξ, θ)], (3)

where Fpn is the total normalized penalty

Fpn(ξ, θ) =

∫
X
ϕ(x, θ)ξ(dx). (4)
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For example, a design ξ∗ is locally D-optimal if and only if its sensitivity function ψ(x, ξ∗, θ) satisfies the

inequality:

ψ(x, ξ∗, θ)/ϕ(x, θ) = tr{µ(x, θ)M−1(ξ∗, θ)}/ϕ(x, θ) ≤ m/Fpn(ξ∗, θ), (5)

3. Locally optimal design and adaptive design

Unless the model is linear with constant variance, the information matrix M(ξ, θ) depends on the un-

known parameters θ. Therefore the optimal design ξ∗ which satisfies (??) also depends on the unknown

parameters θ. For a given value of θ, the corresponding optimal design is defined as the locally optimal

design. Theoretically, one can construct a locally optimal design. But in practice, the practitioner is faced

with the dilemma that the goal of the study is to estimate the quantities which are either a function of

the unknown parameters or the unknown parameters themselves. Simultaneously, one has to know those

unknown values in advance to obtain a reasonable design. To solve this problem, two-stage composite

designs or adaptive designs will be reasonable choices, and are recommended for use. Nevertheless, locally

optimal designs may be constructed as the benchmark for the adaptive designs. Usually the practitioner

will have some idea what the unknown parameters might be, or a range of values that may contain the

true parameters, and this information can be used to construct the locally optimal design as the initial

design in the adaptive procedure.

3.1. Two-stage composite design. Two-stage composite design is a practical alternative for locally

optimal designs because the two stages have different intentions. The goal of the initial design is to

obtain preliminary parameter estimates. The second stage locally optimal design construction is based

on these. The unknown parameters will be estimated twice in this type of design, once after the first

stage for getting the preliminary parameter estimate, and once after all the observations are taken. As a

result, there is only one data analysis needed in the middle of the trial which is easier to implement than

fully adaptive design in practice. If needed, however, this design idea can be generalized to three or four

stage designs ([?].

The procedure of two-stage composite design is very similar to the fully adaptive design:

(1) Identify the dose-response model and design region

(2) Select a penalty function if necessary

(3) Select the parameter(s) to be estimated (e.g. θ) and choose an optimization criterion

(4) Build a locally optimal design (or a collection of them for different “true” parameter values to

pick up the “robust” one), and assign a part of available subjects (N1) to this design. If the
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investigator has little evidence what the “true” parameters are, any “reasonable” design (for

instance, uniform design) can be used.

(5) Estimate the parameters θ̂ based on the initial design and construct the locally optimal design

based on θ̂.

(6) Assign the remaining N2 subjects according to the locally optimal design.

(7) Analysis data using both stage data.

For two-stage composite design, the original optimization problem should be modified to take into account

all of the information obtained in the initial design, i.e. information Σ−10 and (??) becomes:

ξ∗ = arg min
ξ

Ψ[Σ−10 +N2M(ξ, θ)]. (6)

If penalty function is considered, (??) becomes:

ξ∗ = arg min
ξ

Ψ[Σ−10 +N2M(ξ, θ)]/Fpn(ξ, θ). (7)

and the inequality for the sensitivity function becomes

Trace

{
µ(x, θ̂)

ϕ(x, θ̂)

[
Σ−10 +N2M(ξ, θ̂)

]−1}
≤ Trace

{
M(ξ∗, θ̂)

Fpn(ξ∗, θ̂)

[
Σ−10 +N2M(ξ, θ̂)

]−1}
, (8)

or if Σ−10 = N1M(ξ0), then

Trace

{
µ(x, θ̂)

ϕ(x, θ̂)

[
wM(ξ0, θ̂) + (1− w)M(ξ, θ̂)

]−1}
≤ Trace

{
µ(x, θ̂)

ϕ(x, θ̂)

[
wM(ξ0, θ̂) + (1− w)M(ξ, θ̂)

]−1}
,

(9)

where w = N1/(N1 +N2).

3.2. Adaptive design. The idea of adaptive design is to constantly update the values of unknown

parameters as the new observations are made, until the procedure converges or all the resources are

consumed. For model-based adaptive design, the major steps can be summarized as follows:

(1) Identified the dose-response model and design region

(2) Select a penalty function if necessary

(3) Select the parameter(s) to be estimated (e.g. θ) and choose an optimization criterion

(4) Build a locally optimal design (or a collection of them for different “true” parameter values to

pick up the “robust” one), and assign a part of available subjects (N1) to this design. If the

investigator has little evidence what the “true” parameters are, any “reasonable” design (for

instance, uniform design) can be used.

(5) Estimate the parameters based on the initial design and assign the next cohort of patient(s) to

the most informative dose.
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(6) Update the parameter estimates and assign the next cohort of patients to the most informative

dose given the current parameter estimation.

(7) Repeat step 5 and 6 until all the resources are consumed.

In this procedure, the most informative dose is the dose which maximizes the sensitivity function, i.e.

xs = arg max
x∈X

ψ(x, ξs, θ̂s), (10)

where ξs denotes the current design and θ̂s denotes the current parameter estimates. If penalty function

need to be included, (??) should be modified as:

xs = arg max
x∈X

[ψ(x, ξs, θ̂s)/ϕ(x, θ̂s)] (11)

Actually, this procedure is the modification of the exchange algorithm that only contains the forward

step.

4. Implementation in R

There are several commercial software packages available for constructing optimal designs such as PROC

OPTEX of the SAS/QC module, JMP, and Statistica. However, these are only available for D or C op-

timal criterion for simple linear regression model and factorial designs. In pharmacokinetic applications,

the ADAPT II program developed at the University of Southern California implements c- and D-optimal

and partially optimal design generation for individual pharmacokinetic models; however it does not sup-

port more complex population pharmacokinetic models (D’Argenio and Schumitzky, 1997). Ogungbenro

et al. (2005) implemented in Matlab the classical exchange algorithm for population PK experiments

using D-optimality (note that the exchange algorithm improves the initial design with respect to selected

optimality criterion, but, in general, does not converge to the optimal design).

We developed a set of R programs that implement the optimal design algorithm which can be applied to

different design criteria and various linear and non-linear models. Similarly, [?] developed a set of SAS

programs and various examples for constructing locally optimal designs for different models.

4.1. Bivariate probit model. In clinical trial analysis, the toxicity and efficacy responses usually occur

together and it may be useful to assess them together. However, in practice the assessment of toxicity

and efficacy is sometimes separated. For example, determining the maximum tolerated dose (MTD)

is based on toxicity alone and then efficacy is evaluated in Phase II trials over the predetermined dose

range. Obviously, the two responses from the same patient are correlated which will introduce complexity

into the analysis. But if one studies these outcomes simultaneously, more information will be gained for
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future trials and treatment effects will be understood more thoroughly. In drug-response relationship,

the correlation between efficacy and toxicity can be negative or positive depending on the therapeutical

area. Two commonly used models, the Gumbel model (Kotz et al, 2000) and the bivariate binary

Cox model (Cox, 1970), have been introduced to incorporate the two dependent outcomes, toxicity and

efficacy, when both of them are dichotomous. In those two models, one needs to model the probabilities

of different outcome combinations separately. When both outcomes are binary, the total number of

combinations is four, but when outcomes contain more than two categories, the number of unknown

parameters may increase dramatically. Here we propose a bivariate probit model which incorporates the

correlated responses naturally via the correlation structure of the underlying bivariate normal distribution;

see Lesaffre and Molenberghs (1991). When the number of responses is more than two, the multivariate

probit model may be used in a similar fashion.

Let Y = {0 or 1} denote the efficacy response and U = {0 or 1} denote the toxicity response in a clinical

trial. Here 0 indicates no response and 1 indicates a response. Let d denote the dose of a drug and

pyu(x) = P (Y = y, U = u|d = x), y, u = 0 or 1.

Assume that Z1 and Z2 follow bivariate normal distribution with zero mean and variance-covariance

matrix

Σ =

 1 ρ

ρ 1

 ,

where ρ may be interpreted as the correlation measure between toxicity and efficacy for the same patient.

This set-up may be viewed as a standardization of the observed responses Y and U since under the

natural scale the mean and variance vary from study to study. After simple transformation, the correlated

responses follow the standard bivariate normal distribution,

p11 = F (θT1 f1, θ
T
2 f2) =

∫ θT1 f1

−∞

∫ θT2 f2

−∞

1

2π|Σ|1/2
exp(−1

2
ZTΣ−1Z)dz1dz2 (12)

p1. = Φ(θT1 f1) (13)

p.1 = Φ(θT2 f2), (14)

where θ1, θ2 are unknown parameters and f1(x) and f2(x) contain the covariates of interest. Here we

assume a simple linear model defined as follows

θT1 f1 = θ11 + θ12x, θT2 f2 = θ21 + θ22x.

Since f1 = f2 = (1, x)T , in the information matrix, f is used to denote f1 and f2. p1. and p.1 denote

the efficacy and toxicity response rates, respectively, which can be expressed as the marginals of the

bivariate normal distribution, where Φ(z) is the cumulative distribution function of the standard normal
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distribution. Note that p11, p1. and p.1 uniquely define the joint distribution of Y and U , i.e., p10 =

p1. − p11, p01 = p.1 − p11 and p00 = 1− p1. − p.1 + p11.

Assume that the {yi, ui}’s are independent for different i’s. Then the likelihood function for {Y, U} is

given by

L(Y, U |θ) =

N∏
i=1

yiui log p11 + yi(1− ui) log p10 + ui(1− yi) log p01 + (1− yi)(1− ui) log p00.

The information matrix of a single observation is [C1C2]
⊗
f

φ2 −φ2 −φ2

 (P − ppT )−1

 [C1C2]
⊗
f

φ2 −φ2 −φ2

T ,
where

C1 =

 φ(θT1 f) 0

0 φ(θT2 f)

 , C2 =

 F (u1) 1− F (u1) −F (u1)

F (u2) −F (u2) 1− F (u2)

 ,

u1 =
θT2 f2 − ρθT1 f1√

1− ρ2
, u2 =

θT1 f1 − ρθT2 f2√
1− ρ2

,

P =


p11 0 0

0 p10 0

0 0 p01

 , p = (p11 p10 p01)T ,

φ(v) denotes the probability density function of the standard normal distribution, φ2 = φ(θT1 f, θ
T
2 f, ρ)

denotes the probability density function of bivariate normal distribution with mean θT1 f1 and θT2 f2,

variance 1 and correlation coefficient ρ.

It will be unethical to assign patients to the non-efficacious dose or potentially toxic dose. To incorporate

this concern into account, Dragalin and Fedorov (2005) proposed a rather flexible penalty function ϕ(x, θ):

ϕ(x, θ;CE , CT ) = {p10(x, θ)}−CE{1− p.1(x, θ)}−CT . (15)

This function of the dose and the model parameters penalizes more when the probability of success

(Y = 1, U = 0) gets lower/or toxicity gets higher. The magnitude of penalty is controlled by the

parameters CE and CT . When CT = 0, the penalty is added only for the observations taken at the doses

with low probability of success; when CE = 0, the penalty is added only for the observations taken at

the doses with high probability of toxicity.

Although model ?? will be used throughout the following sections and examples, the R programs can be

easily modified to address other non-linear models.
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This example is motivated by a dose-finding trial for prevention of cardioembolism in patients with atrial

fibrillation or prosthetic heart valves. The efficacy endpoint for the new anticoagulant compound is NO

venous thromboembolism (VTE) events and one can expect the toxicity endpoint is the major bleeding

events. It is necessary to consider the two endpoints simultaneously and since both endpoints are binary,

the bivariate probit model is the proper model for model the dose-response relationship. Here we only

consider the simple model that the first order linear function of dose is included in the model.

4.2. Fully adaptive design and simulations. In this particular design scheme it is assumed that at

every step a patient is added, and the values correlated from each response is regularly updated. This

process is continual and cannot be reversed and therefore the ideal scenario is to implement the exchange

algorithm, see (11). This program can best understood by using the same bivariate probit model.

5. RExcel Interface

This section is an illustration of how to obtain optimal designs for bivariate probit model through the use

of the RExcel interface. We show the complete interaction between the user and the interface program.

Figure 1. Screenshot:
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Figure 2. Screenshot:
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Figure 3. Screenshot:
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Figure 4. Screenshot:
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Figure 5. Screenshot:
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Figure 6. Screenshot:
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Figure 7. Screenshot:
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Figure 8.
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Figure 9. Screenshot:
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Figure 10. Screenshot:

6. Conclusion

In this article, we have considered contruction of optimal designs, namely, locally optimal designs, L(θ)-

optimal, two stage composite designs and the fully adaptive designs for the bivariate probit model. One

can easily change or modify the R programs in order to construct optimal designs pertaining to other

non-linear response models.

Appendix A. Installation of Software

The OptimalDesigns toolbox consists of a workbook written for Microsoft Excel on Windows that com-

municates through the RExcel interface with a package written in R. The Download and Installation

section gives detailed instructions on

(1) downloading R with RExcel and related packages included. The instructions assume that you

have Excel on your Windows computer, but do not yet have R on your computer.

(2) downloading and installing the OptimalDesigns toolbox.

A.1. Download and Installation.

R and RExcel. Although R by itself can be installed on any computer, RExcel requires administrator

privileges for installation. Go to the RExcel website http://rcom.univie.ac.at, click the Download tab,

and download the RAndFriendsSetup* installer file. This is a Windows executable .exe file that installs R

and several related packages. Run the installer from an account with administrator privileges. Accept

http://rcom.univie.ac.at
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Figure 11. You must check the “Use Internet Explorer http proxy” checkbox when

installing RAndFriends.

almost all defaults. The exception is that you must check the checkbox

Use Internet Explorer http proxy

on the installation dialog box as in Figure ??. If you forget, then you will not be able to get through the

GSK firewall, you will get messages like "Unable to execute file c:\...\RExcelInst.latest.exe",

and you will need to cancel the installation and start over.

OptimalDesigns Package and Workbook. The OptimalDesigns Package and Workbook are provided as a

single ZIP file containing three files. Download the ZIP file to a directory on your computer. Unzip it

and it will create an OptimalDesigns subdirectory with three files.

OptimalDesigns_version.zip

OptimalDesigns-version.xlsm

OptimalDesigns_version.tar.gz

Install the OptimalDesigns by starting R from the R icon. In the R Console window, click

Packages > Install package(s) from local Zip files...

Navigate the Select Files window to the OptimalDesigns directory and double-click on

OptimalDesigns_version.zip

Close R with the File > Exit > No menu item.

The software is now installed and ready to use.

A.2. Using the OptimalDesigns Toolbox.

Open Windows Explorer to the OptimalDesigns directory and double-click

OptimalDesigns-version.xlsm for Excel 2007
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The file will open in Excel and start R.

Questions. If you need additional help, please contact Sourish Saha sourish.c.saha@gsk.com and in-

clude two necessary pieces of information.

(1) The information that you get from clicking About RExcel.

In Excel 2007, click on the main Excel menu

Add-Ins > RExcel > About RExcel > Copy to Clipboard

Paste that information into the email.

(2) When RExcel is running, the R Console is visible on the Windows Taskbar.

Click the R Console icon and enter the line

packageDescription("OptimalDesigns")

into the R Console. Copy and paste the lines it displays into the email.

R. R is a freely available language and environment for statistical computing and graphics which provides

a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests,

time series analysis, classification, clustering, etc. Please consult the R project homepage: http://www.

r-project.org for further information.

The current version of R (R-2.12.0) was released in November, 2010. The OptimalDesigns software may

not work with earlier releases of R.

RExcel. RExcel is an Excel add-in using statconn (D)COM or rcom to allow Excel to call R from within

Excel. The RExcel website is http://rcom.univie.ac.at. Much detail is available at the Wiki there.
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